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Abstract. We discuss the critical behaviour of thgstate Potts model on a diamond-

like hierarchical lattice with ferromagnetic interactions according to an aperiodic two-letter
substitutional sequence. We show that the geometric (deterministic) fluctuations become relevant
forow > 1—- D/(2— «,), wherew is the wandering exponent of the sequenbeis the fractal
dimension of the lattice, and, is the critical exponent associated with the specific heat of the
uniform model. We also point out that the criteria for analysing the relevance of deterministic
and random fluctuations are genericalijferent

The introduction of quenched disorder is known to change the critical behaviour of
ferromagnetic systems whenever (but not only) the corresponding uniform model is
characterized by a positive exponent associated with the divergence of the specific heat
[1, 2]. A similar effect may be anticipated if the exchange interactions are chosen according
to an aperiodic, although deterministic, type of rule. Recently, Luck [3] proposed a heuristic
criterion which indicates indeed that the geometric fluctuations produced by the aperiodic
rule may be responsible for changing the nature of the critical behaviour.

The discovery of quasicrystals [4] motivated the investigation of different types of spin
models with aperiodic interactions. Recent calculations for the ground state of a quantum
Ising chain support the heuristic criterion of Luck [3, 5]. In previous papers [6], one of
us has taken advantage of the simplicity of diamond-type hierarchical lattices (DHL) [7, 8]
to analyse the critical behaviour of the Ising model with a distribution of ferromagnetic
exchange interactions according to a certain class of two-letter substitutional sequences. In
this letter, we extend these results to thstate Potts model with aperiodic ferromagnetic
interactions on a general DHL, and derive an exact criterion to show the relevance of the
geometric fluctuations above a critical number of stgtesWe also establish some contacts
with calculations for the disordered Potts model.

The ¢-state Potts ferromagnet is given by the Hamiltonian

H=-—¢q Z ‘]ijaﬂiﬁj (1)
@)
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Figure 1. Some stages of the construction of a DHL with chemical lerigth 2 andm = 2
branches (the simple diamond lattice) for the period-doubling sequenBe — (AB, AA)
(letters A and B indicate the exchange interactiong, > 0 andJp > 0).

whereo; =1, 2, ..., ¢ for all sites of a latticeJ;; > 0, and the sungi, j) refers to nearest-
neighbour sites. To give an example, let us consider the simple diamond lattice (that is,
a DHL with m = 2 branches in parallel, each of them with= 2 bonds in series), and
choose the ferromagnetic interactiofig according to the two-letter generalized Fibonacci
sequence given by the substitutiams, B) — (AB, AA), as indicated in figure 1 (to mimic
a layered structure, the interactions aperiodic along the branchesf the lattice).

At each generation associated with the period-doubling sequenc®) — (AB, AA)
the numbersV), and Nj, of lettersA and B, can be obtained from those of the preceding
level, N, and N, from the recursion relations

() =1(5) @

with the substitution matrix

1 2

M—(lo) 3)
whose eigenvalues avg = b = 2 andi, = —1. The total number of lettersy™, at a
large ordern of the sequence construction, fluctuates asymptoticallj &$” ~ (N™)®,
where

In|Az]
=2 4

@ In A ( )

is thewandering exponeni3] of the geometric fluctuations.

Introducing the transmissivity variable [9],
1—exp(—gBJ
;= p(—gBJ) (5)
1+ (g —Dexp(—gBJ)
and using the break-collapse techniques [10], it is straightforward to write the exact recursion
relations

o 2tatp + (g — 21312
A 14 (g — D)r3e2

(6)

and
v 212 + (g — 4

7
1+ (q— Dt} )
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wheret, andrp are associated witll, > 0 andJp > 0, respectively. Now it is easy to
show that the only physical fixed points are along the diagonat 7z of the parameter
space. There are two trivial stable fixed pointg € 15 = 0, andzy = 13 = 1), and the
non-trivial uniform fixed point, O< 14 = 13 = t¥(q) < 1, wheret*(q) comes from the
equation(g — 1)(t/)3 + (t*)?+t* — 1 = 0 (the function(¢) decreases monotonically from
1 to 0 asq varies from 0 tooco). The linearization in the neighbourhood of this uniform
fixed point yields the matrix relation

At T [ Ata

(&) =cam (3) ®)
where the prefactoC(g) depends ory but does not depend on the particular two-letter
sequence, andil” is the transpose of the substitution matrix. The eigenvalues of this
transformation areA1(g) = C(g)A1 = 2C(gq) and Az(q) = C(g)r2 = —C(q). The
expression for the largest eigenvalue,(g), also corresponds to the thermal eigenvalue of
the linearization about the non-trivial fixed point of the corresponding uniform model (that
is, with J4, = Jp > 0). Therefore, it is straightforward to write an expressionddy). For
A1 = 2C(g) > 1 (as in the uniform model), and\2(¢)| = C(gq) < 1, the fixed point in
the (14, tp) parameter space is of a hyperbolic character as illustrated in figayg\&kich
indicates the existence of a critical line in the phase diagram in terms of the temperature and
the ratior = J/J,). The critical behaviour is characterized by the same critical exponents
of the uniform model. FoC(g) > 1, however, the uniform fixed point is totally unstable
(as illustrated in figure &), which indicates a change in the character of the transition.
From the conditionC(¢) = 1, we obtain the critical valug = g, = 4 + 2+/2 (where the
subscriptd stands for deterministic). Far > ¢4, that corresponds t6(g) > 1, the uniform
fixed point is fully unstable. The geometric fluctuations are irrelevangferg,, as in the
case of the Ising model (= 2), but become relevant far > ¢,. It should be remarked
that, as shown by Derrida and Gardner [11], the same wvglue 4+ 2./2 (wherer stands
for random) corresponds to the crossover between uniform and disordered fixed points for
a disordered ferromagnetic Potts model on the simple diamond hierarchical lattice we are
discussing (see equation (3)).

Now we consider a Potts model ongeneral DHL, with m branches in parallel,
each one of them withb bonds in series (and hence a chemical lenbjth and with
ferromagnetic interactions according to the two-letter petiogubstitution (A, B) —

(A" Bb—m Ar2 Bb—n2) with 0 < nq < b, 0 < ny < b, and where the order of the letters

A and B does not matter. This family of hierarchical structures includes the lattices that
represent the Migdal-Kadanoff renormalization group approximations for this model on a
d-dimensional hypercubic Bravais latticé ¢€oincides with their fractal dimension). The
substitution matrix associated with the peribdequence is given by

o m na
M_(b—nl b—nz) ©)

with eigenvalues.; = b and X, = n; — n,. Hence, from equation (4):
In [ny — na|
- Inb
Using techniques of graph theory, as in the work of Essam and Tsallis [12], it is not difficult
to write the recursion relations
N(ta, tp; n1)
D(t4, tp;n1)

(10)

N(ta,tp;
and 1 = N(ta. ts: n2) (11)

t, =
4 D(ta, tp; n2)
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Figure 2. Schematic representations of the flow diagrams for the
ferromagnetic Potts model in the,, 15) parameter spacea) for
\ q < qq4, and p) for ¢ > ¢g4. The arrows indicate the direction of
the flow for consecutive (alternating) iterations when the smallest
\ eigenvalue Ax(g) of the map is positive (negative), i.e. when
n1 > ny (n1 < ny). Squares, full circles, and open circles, represent
_ fully stable, semistable and unstable fixed points, respectively. The
Y diagonalry = tp is an invariant subspace under the renormalization
0 (b) 1 ta g A=1pls p
group transformation.
where
m
F(g, G411 _
N(ta.tpin) = 4. G11) =l em (12)
=1 (‘] - l)
and
m
D(ta,tgim) =1+ Y F(q. Gpeyey "' cpr (13)

=2

where G; is the graph formed by parallel edgesC;" is a combinatorial number and
F(q, G)) is the flow polynomial [12] associated witli;. For exampleF (g, G2) = (¢ —1),
F(q,G3) = (g—1(q—2), F(q,Gs) = (g —1)(¢%> — 39 +3), and we can use the deletion—
contraction rule to write the recursion relation

F(g,G) = (q -1~ F(q,Gi1). (14)

From these equations, we can easily derive equations (6) and (7) for the simple diamond
hierarchical lattice. For a general DHL, the fixed points in the two-parameter space include
those of the uniform case (for whicty = 7). Again, besides the trivial fixed points,
there is a non-trivial uniform fixed point, & t4 = t5 = (q) < 1. As in the previous
example, the linearization of the recursion relations in the neighbourhood of this uniform
fixed point, £¥(g), still leads to the same form of matrix relation given by equation (8),
with C(g) = Ai(g)/b, where A1(g) is the thermal eigenvalue of the uniform model
(Jo = Jp > 0). In fact, the prefactorC(g) can be calculated from the renormalized
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transmissivityt' (¢4, t2, . . ., t,,5) Of the DHL under consideration,
or’
Clg) =m— (15)
i l1zq)
where theith bond(i = 1, 2, ..., mb) has a transmissivity;, and wherey =, = --- =
tuy = t¥(g). Due to the invariance of (14, ..., t,,,) under any permutation of thg's, all

themb derivativesdt’/dt;|;- are equal among themselves. Derredal [2] have shown that,
if this symmetry condition holds for the quenched disordered Potts model on a hierarchical
lattice, then we can use the Harris criterion, that is, disorder is relevant (irrelevant) when
the critical exponent, of the uniform case is positive (negative). In the absence of this
symmetry condition, the disorder is relevant foy above a negative critical value. In
the symmetric case, disorder starts to become relevant at a critical nynloérstates,
corresponding to the vanishing of,, such that
at’ 1
- = _— 16
|y o ae
For the aperiodic Potts model of this paper, the eigenvalues of the linearization of the
recursion relations in the neighbourhood #jfg) are A1(q) = 11C(g) = bC(g) and
A2(g) = 22C(g) = (n1 —n2)C(q). Therefore, ag\; > 1, the uniform fixed point becomes
fully unstable for

|A2(g)] = In1—n2|C(g) > 1. 17)
From equation (15), the number of statgsassociated with the onset of relevance of the
geometrical fluctuations is given by

at’ . 1

o 1:(qa) ~ ming —nal’

(18)

Comparing equations (16) and (18), we see thatoincides withg, if b = m|ni — no|?.

Now we investigate the implications of the condition under which the non-trivial uniform
fixed point becomes fully unstable. Let us consider the recursion relation associated with
the uniform model {4, = Jp > 0). From the linearization about the non-trivial fixed point,
we haveA; = bC(g) = b, with the thermal exponent [8, 11, 18] = D/(2 — «,), Where
D = In(bm)/Inb is the fractal dimension of the DHL. Therefor€(q) = bP/@-%-1,
From equation (10) we also havye; — n,| = b®. Inserting the expressions fdr(g) and
|n1 — ny| into equation (17), we show that the geometric fluctuations become relevant for

D

— oy
and irrelevant fow < 1 — D/(2 — «,). Condition (19) reduces to the inequaliy > O if
w =1— D/2, which occurs fo = m|n; — ny|?.

As an example, let us consider again thstate Potts model on the simple diamond
lattice ¢ = 2, m = 2) with aperiodic interactions according to the period-doubling
substitution(A, B) — (AB, AA) (that is, withny; = 1 andn,; = 0). Asw =0 andD = 2,
the geometric fluctuations become relevantdpr> 0, which is identical to the criterion of
Derrida and Gardner [11] for the relevance of disorder in the ferromagnetic Potts model on
the simple diamond lattice. Alsa, > 0 is associated with > g, = ¢, = 4+ 2/2.

To give another example, consider thestate Potts model on a DHL with = 3 bonds
per branch anéh = 3 branches (fractal dimensidh = 2), and with ferromagnetic aperiodic
interactions according to the two-letter substitutign B) — (ABB, AAA) (thatis,n; =1
andn, = 3, and henceé # m|n; — n,/?). As w = In2/In3, the geometric fluctuations

w>1-—

(19)
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become relevant fow, > —2(In 2)/In(§), that corresponds tg > g, = 0.226414 ...
Therefore, the critical behaviour of the Ising version of this mode( 2) is drastically
affected by the geometric fluctuations. However, quenched disorder is still irrelevant up to
much bigger values of (in this example, the crossover to a disordered fixed point only
occurs forg > g, = 7.722361 ..).

Let us now mention that an alternative wandering exporeicen be defined in this
problem in the following manner. Let us denote B’ and N " the respective numbers of
letters A and B at thenth level of construction of the considerdderarchical lattice. One
can define a matrixZ, which relatesV " and N’ with N~ and N, similar to the
definition of the substitution matrix/ (equation (2)). One can easily show thidt=m M,

X1 = mki; andi, = m A, wherei; andi, are the eigenvalues df. Consequently, the
total number of lettersV® = N{” + NJ”, at a large leveh of the hierarchical level,
has a subdominant term N ™ which behaves asymptotically asN ™ ~ (N™)® where
@ =1In|x2|/INky =1+ (w —1)/D. One can, thus, rewrite equation (19) in termszos

1—aq,

(20)

w > 5_ o,
which—interestingly enough—formally coincides with Luck’s criterion [3] for statistical-
mechanical models (with aperiodicity in the coupling constantsBoawvais lattices and
guasicrystals.

In conclusion, deterministic geometric fluctuations and random disorder are both capable
of introducing drastic changes in the critical behaviour of a statistical model. We have
established a criterion to check the relevance of geometric fluctuations in the critical
behaviour of ferromagnetic Potts models. This criteriomxact for DHL and possibly a
good approximation for (hypercubic) Bravais lattices. Geometrical and random fluctuations,
however, are distinct phenomena. For example, in the case gfs$kate Potts ferromagnet,
the threshold for the onset of changes in the critical behaviour may occur at different values,
q4 # qr, in the deterministic and the random cases.

We are grateful for discussions WiE M F Curado,S T R Pinho ad T A S Haddad, and
partial financial support of CNPq and PRONEX (Brazilian agencies).
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