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Abstract. We discuss the critical behaviour of theq-state Potts model on a diamond-
like hierarchical lattice with ferromagnetic interactions according to an aperiodic two-letter
substitutional sequence. We show that the geometric (deterministic) fluctuations become relevant
for ω > 1−D/(2− αu), whereω is the wandering exponent of the sequence,D is the fractal
dimension of the lattice, andαu is the critical exponent associated with the specific heat of the
uniform model. We also point out that the criteria for analysing the relevance of deterministic
and random fluctuations are genericallydifferent.

The introduction of quenched disorder is known to change the critical behaviour of
ferromagnetic systems whenever (but not only) the corresponding uniform model is
characterized by a positive exponentαu associated with the divergence of the specific heat
[1, 2]. A similar effect may be anticipated if the exchange interactions are chosen according
to an aperiodic, although deterministic, type of rule. Recently, Luck [3] proposed a heuristic
criterion which indicates indeed that the geometric fluctuations produced by the aperiodic
rule may be responsible for changing the nature of the critical behaviour.

The discovery of quasicrystals [4] motivated the investigation of different types of spin
models with aperiodic interactions. Recent calculations for the ground state of a quantum
Ising chain support the heuristic criterion of Luck [3, 5]. In previous papers [6], one of
us has taken advantage of the simplicity of diamond-type hierarchical lattices (DHL) [7, 8]
to analyse the critical behaviour of the Ising model with a distribution of ferromagnetic
exchange interactions according to a certain class of two-letter substitutional sequences. In
this letter, we extend these results to theq-state Potts model with aperiodic ferromagnetic
interactions on a general DHL, and derive an exact criterion to show the relevance of the
geometric fluctuations above a critical number of statesqd . We also establish some contacts
with calculations for the disordered Potts model.

The q-state Potts ferromagnet is given by the Hamiltonian

H = −q
∑
(i,j)

Jij δσi ,σj (1)
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Figure 1. Some stages of the construction of a DHL with chemical lengthb = 2 andm = 2
branches (the simple diamond lattice) for the period-doubling sequence(AB) → (AB,AA)

(lettersA andB indicate the exchange interactions,JA > 0 andJB > 0).

whereσi = 1, 2, . . . , q for all sites of a lattice,Jij > 0, and the sum(i, j) refers to nearest-
neighbour sites. To give an example, let us consider the simple diamond lattice (that is,
a DHL with m = 2 branches in parallel, each of them withb = 2 bonds in series), and
choose the ferromagnetic interactionsJij according to the two-letter generalized Fibonacci
sequence given by the substitutions(A,B)→ (AB,AA), as indicated in figure 1 (to mimic
a layered structure, the interactions areaperiodic along the branchesof the lattice).

At each generation associated with the period-doubling sequence(A,B)→ (AB,AA)

the numbersN ′A andN ′B , of lettersA andB, can be obtained from those of the preceding
level,NA andNB , from the recursion relations(

N ′A
N ′B

)
= M

(
NA
NB

)
(2)

with the substitution matrix

M =
(

1 2
1 0

)
(3)

whose eigenvalues areλ1 = b = 2 andλ2 = −1. The total number of letters,N(n), at a
large ordern of the sequence construction, fluctuates asymptotically as1N(n) ∼ (N(n))ω,
where

ω = ln |λ2|
ln λ1

(4)

is thewandering exponent[3] of the geometric fluctuations.
Introducing the transmissivity variable [9],

t = 1− exp(−qβJ )
1+ (q − 1) exp(−qβJ ) (5)

and using the break-collapse techniques [10], it is straightforward to write the exact recursion
relations

t ′A =
2tAtB + (q − 2)t2At

2
B

1+ (q − 1)t2At
2
B

(6)

and

t ′B =
2t2A + (q − 2)t4A
1+ (q − 1)t4A

(7)
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where tA and tB are associated withJA > 0 andJB > 0, respectively. Now it is easy to
show that the only physical fixed points are along the diagonaltA = tB of the parameter
space. There are two trivial stable fixed points (tA = tB = 0, andtA = tB = 1), and the
non-trivial uniform fixed point, 0< tA = tB = t∗u (q) < 1, wheret∗u (q) comes from the
equation(q−1)(t∗u )

3+ (t∗u )2+ t∗u −1= 0 (the functiont∗u (q) decreases monotonically from
1 to 0 asq varies from 0 to∞). The linearization in the neighbourhood of this uniform
fixed point yields the matrix relation(

1t ′A
1t ′B

)
= C(q)MT

(
1tA
1tB

)
(8)

where the prefactorC(q) depends onq but does not depend on the particular two-letter
sequence, andMT is the transpose of the substitution matrix. The eigenvalues of this
transformation are31(q) = C(q)λ1 = 2C(q) and 32(q) = C(q)λ2 = −C(q). The
expression for the largest eigenvalue,31(q), also corresponds to the thermal eigenvalue of
the linearization about the non-trivial fixed point of the corresponding uniform model (that
is, with JA = JB > 0). Therefore, it is straightforward to write an expression forC(q). For
31 = 2C(q) > 1 (as in the uniform model), and|32(q)| = C(q) < 1, the fixed point in
the (tA, tB) parameter space is of a hyperbolic character as illustrated in figure 2(a) (which
indicates the existence of a critical line in the phase diagram in terms of the temperature and
the ratior = JB/JA). The critical behaviour is characterized by the same critical exponents
of the uniform model. ForC(q) > 1, however, the uniform fixed point is totally unstable
(as illustrated in figure 2(b)), which indicates a change in the character of the transition.
From the conditionC(q) = 1, we obtain the critical valueq = qd = 4+ 2

√
2 (where the

subscriptd stands for deterministic). Forq > qd , that corresponds toC(q) > 1, the uniform
fixed point is fully unstable. The geometric fluctuations are irrelevant forq < qd , as in the
case of the Ising model (q = 2), but become relevant forq > qd . It should be remarked
that, as shown by Derrida and Gardner [11], the same valueqr = 4+ 2

√
2 (wherer stands

for random) corresponds to the crossover between uniform and disordered fixed points for
a disordered ferromagnetic Potts model on the simple diamond hierarchical lattice we are
discussing (see equation (3)).

Now we consider a Potts model on ageneral DHL, with m branches in parallel,
each one of them withb bonds in series (and hence a chemical lengthb), and with
ferromagnetic interactions according to the two-letter period-b substitution (A,B) →
(An1Bb−n1, An2Bb−n2), with 0 6 n1 < b, 0 < n2 6 b, and where the order of the letters
A andB does not matter. This family of hierarchical structures includes the lattices that
represent the Migdal–Kadanoff renormalization group approximations for this model on a
d-dimensional hypercubic Bravais lattice (d coincides with their fractal dimension). The
substitution matrix associated with the period-b sequence is given by

M =
(

n1 n2

b − n1 b − n2

)
(9)

with eigenvaluesλ1 = b andλ2 = n1− n2. Hence, from equation (4):

ω = ln |n1− n2|
ln b

. (10)

Using techniques of graph theory, as in the work of Essam and Tsallis [12], it is not difficult
to write the recursion relations

t ′A =
N(tA, tB; n1)

D(tA, tB; n1)
and t ′B =

N(tA, tB; n2)

D(tA, tB; n2)
(11)
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Figure 2. Schematic representations of the flow diagrams for the
ferromagnetic Potts model in the(tA, tB) parameter space: (a) for
q < qd , and (b) for q > qd . The arrows indicate the direction of
the flow for consecutive (alternating) iterations when the smallest
eigenvalue32(q) of the map is positive (negative), i.e. when
n1 > n2 (n1 < n2). Squares, full circles, and open circles, represent
fully stable, semistable and unstable fixed points, respectively. The
diagonaltA = tB is an invariant subspace under the renormalization
group transformation.

where

N(tA, tB; n) =
m∑
l=1

F(q,Gl+1)

(q − 1)
tnlA t

(b−n)l
B Cml (12)

and

D(tA, tB; n) = 1+
m∑
l=2

F(q,Gl)t
nl
A t

(b−n)l
B Cml (13)

whereGl is the graph formed byl parallel edges,Cml is a combinatorial number and
F(q,Gl) is the flow polynomial [12] associated withGl . For example,F(q,G2) = (q−1),
F(q,G3) = (q−1)(q−2), F(q,G4) = (q−1)(q2−3q+3), and we can use the deletion–
contraction rule to write the recursion relation

F(q,Gl) = (q − 1)l−1− F(q,Gl−1). (14)

From these equations, we can easily derive equations (6) and (7) for the simple diamond
hierarchical lattice. For a general DHL, the fixed points in the two-parameter space include
those of the uniform case (for whichtA = tB). Again, besides the trivial fixed points,
there is a non-trivial uniform fixed point, 0< tA = tB = t∗u (q) < 1. As in the previous
example, the linearization of the recursion relations in the neighbourhood of this uniform
fixed point, t∗u (q), still leads to the same form of matrix relation given by equation (8),
with C(q) = 31(q)/b, where31(q) is the thermal eigenvalue of the uniform model
(JA = JB > 0). In fact, the prefactorC(q) can be calculated from the renormalized
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transmissivityt ′(t1, t2, . . . , tmb) of the DHL under consideration,

C(q) = m∂t
′

∂ti

∣∣∣∣
t∗u (q)

(15)

where theith bond(i = 1, 2, . . . , mb) has a transmissivityti , and wheret1 = t2 = · · · =
tmb = t∗u (q). Due to the invariance oft ′(t1, . . . , tmb) under any permutation of theti ’s, all
themb derivatives∂t ′/∂ti |t∗u are equal among themselves. Derridaet al [2] have shown that,
if this symmetry condition holds for the quenched disordered Potts model on a hierarchical
lattice, then we can use the Harris criterion, that is, disorder is relevant (irrelevant) when
the critical exponentαu of the uniform case is positive (negative). In the absence of this
symmetry condition, the disorder is relevant forαu above a negative critical value. In
the symmetric case, disorder starts to become relevant at a critical numberqr of states,
corresponding to the vanishing ofαu, such that

∂t ′

∂ti

∣∣∣∣
t∗u (qr )
= 1√

bm
. (16)

For the aperiodic Potts model of this paper, the eigenvalues of the linearization of the
recursion relations in the neighbourhood oft∗u (q) are 31(q) = λ1C(q) = bC(q) and
32(q) = λ2C(q) = (n1− n2)C(q). Therefore, as31 > 1, the uniform fixed point becomes
fully unstable for

|32(q)| = |n1− n2|C(q) > 1. (17)

From equation (15), the number of statesqd associated with the onset of relevance of the
geometrical fluctuations is given by

∂t ′

∂ti

∣∣∣∣
t∗u (qd )
= 1

m|n1− n2| . (18)

Comparing equations (16) and (18), we see thatqr coincides withqd if b = m|n1− n2|2.
Now we investigate the implications of the condition under which the non-trivial uniform

fixed point becomes fully unstable. Let us consider the recursion relation associated with
the uniform model (JA = JB > 0). From the linearization about the non-trivial fixed point,
we have31 = bC(q) = byt , with the thermal exponent [8, 11, 13]yt = D/(2−αu), where
D = ln(bm)/ ln b is the fractal dimension of the DHL. Therefore,C(q) = bD/(2−αu)−1.
From equation (10) we also have|n1 − n2| = bω. Inserting the expressions forC(q) and
|n1− n2| into equation (17), we show that the geometric fluctuations become relevant for

ω > 1− D

2− αu (19)

and irrelevant forω < 1−D/(2− αu). Condition (19) reduces to the inequalityαu > 0 if
ω = 1−D/2, which occurs forb = m|n1− n2|2.

As an example, let us consider again theq-state Potts model on the simple diamond
lattice (b = 2, m = 2) with aperiodic interactions according to the period-doubling
substitution(A,B)→ (AB,AA) (that is, withn1 = 1 andn2 = 0). Asω = 0 andD = 2,
the geometric fluctuations become relevant forαu > 0, which is identical to the criterion of
Derrida and Gardner [11] for the relevance of disorder in the ferromagnetic Potts model on
the simple diamond lattice. Also,αu > 0 is associated withq > qd = qr = 4+ 2

√
2.

To give another example, consider theq-state Potts model on a DHL withb = 3 bonds
per branch andm = 3 branches (fractal dimensionD = 2), and with ferromagnetic aperiodic
interactions according to the two-letter substitution(A,B)→ (ABB,AAA) (that is,n1 = 1
and n2 = 3, and henceb 6= m|n1 − n2|2). As ω = ln 2/ ln 3, the geometric fluctuations
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become relevant forαu > −2(ln 2)/ ln( 3
2), that corresponds toq > qd = 0.226 414. . . .

Therefore, the critical behaviour of the Ising version of this model (q = 2) is drastically
affected by the geometric fluctuations. However, quenched disorder is still irrelevant up to
much bigger values ofq (in this example, the crossover to a disordered fixed point only
occurs forq > qr = 7.722 361. . . ).

Let us now mention that an alternative wandering exponentω̄ can be defined in this
problem in the following manner. Let us denote byN̄ (n)

A andN̄ (n)
B the respective numbers of

lettersA andB at thenth level of construction of the consideredhierarchical lattice. One
can define a matrixM̄, which relatesN̄ (n)

A andN̄ (n)
B with N̄ (n−1)

A andN̄ (n−1)
B , similar to the

definition of the substitution matrixM (equation (2)). One can easily show thatM̄ = m M,
λ̄1 = mλ̄1 and λ̄2 = m λ̄2 where λ̄1 and λ̄2 are the eigenvalues of̄M. Consequently, the
total number of lettersN̄ (n) = N̄

(n)
A + N̄ (n)

B , at a large leveln of the hierarchical level,
has a subdominant term1N̄(n) which behaves asymptotically as1N̄(n) ∼ (N̄ (n))ω̄ where
ω̄ = ln |λ̄2|/ ln λ̄1 = 1+ (ω − 1)/D. One can, thus, rewrite equation (19) in terms ofω̄ as

ω̄ >
1− αu
2− αu (20)

which—interestingly enough—formally coincides with Luck’s criterion [3] for statistical-
mechanical models (with aperiodicity in the coupling constants) onBravais lattices and
quasicrystals.

In conclusion, deterministic geometric fluctuations and random disorder are both capable
of introducing drastic changes in the critical behaviour of a statistical model. We have
established a criterion to check the relevance of geometric fluctuations in the critical
behaviour of ferromagnetic Potts models. This criterion isexact for DHL and possibly a
good approximation for (hypercubic) Bravais lattices. Geometrical and random fluctuations,
however, are distinct phenomena. For example, in the case of theq-state Potts ferromagnet,
the threshold for the onset of changes in the critical behaviour may occur at different values,
qd 6= qr , in the deterministic and the random cases.

We are grateful for discussions with E M F Curado,S T R Pinho and T A S Haddad, and
partial financial support of CNPq and PRONEX (Brazilian agencies).
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